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Abstract
The problem of accurately accounting for long ranged Coulomb forces
within periodic boundaries in Monte Carlo and molecular dynamics computer
simulation of strongly coupled Coulomb systems is considered. Periodicity
artefacts characteristic of the conventional Ewald summation procedure are
eliminated by angular averaging of Ewald sums over all orientations of the main
cell. This approach provides an effective analytical electrostatic interaction
potential and allows fast and accurate simulations of strongly coupled Coulomb
fluids even on a modern PC. The effectiveness and accuracy of the method is
illustrated on simple non-ideal plasma models.

PACS numbers: 07.05.Tp, 52.65.−y

1. Introduction

Despite great progress achieved in the microscopic description of condensed matter since the
pioneering works of Madelung [1] and Ewald [2], correct description of long ranged Coulomb
forces under conditions of computer simulation with periodic boundary conditions (PBC)
still remains a topical issue both in conventional [3] and ab initio [4] computer simulations.
The standard Ewald procedure [5] when applied to Coulomb systems under PBC invokes a
non-isotropic electric field having cubic symmetry of a crystalline lattice composed of main
Monte Carlo (MC) or molecular dynamics (MD) computation cells as elementary units. It
results in an artificial ‘crystalline field’ in simulations of fluids, amorphous solids and other
spatially uniform condensed phases. An example presented in [6] shows how important these
periodicity artefacts may be in real simulations.

In ab initio computer simulations [7], the number of particles in the main cell is very
limited, mainly by the supercomputer facilities available. Periodicity artefacts imposed by
the conventional Ewald summation procedure may appear a major issue here. Being almost
negligible at small distances even for a relatively small number N of charged particles in the
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cell, these artefacts become important at larger distances. For instance, for N = 200, which is
characteristic for up-to-date ab initio simulations using the best available computing codes and
facilities [8, 9], the maximum value of the Ewald artefact is about 10% in effective Coulomb
interaction energy at a distance of third coordination sphere and reaches ∼100% at the edge
of the main cell [6].

Accurate computer simulations of biochemical and other systems having complex
elemental composition require sometimes up to a million particles [10] in the main cell.
Obviously, the larger the number of charged particles in the main cell, the more acute is the
problem of the effective evaluation of the electrostatic contribution. Periodicity artefacts in
this case are small but the heavy processor load imposed by the conventional Ewald summation
procedure is crucial in such simulations. Thus, the problem of effective and accurate evaluation
of electrostatic fields is important for any size of the cell.

An approach eliminating these periodicity artefacts in spatially uniform Coulomb systems
and cardinally increasing efficiency of simulation was proposed recently [6]. This approach
is outlined in section 2, in section 3 its generalization on a one-component plasma (OCP) and
a semi-classical model of hydrogen plasma, as well as new MC and MD simulation results,
demonstrating the accuracy of the method, are presented, in section 4 these results and the
possibility of other applications of the method are discussed.

2. Pre-averaged effective potentials

Let us consider a standard cubic main cell of edge L and volume V = L3, containing
N = ∑M

α=1 Nα charged particles of M sorts within PBC. The electrostatic forces acting
between the ith and the j th particles obey the Coulomb law:

Fij = QiQj

4πε0r
2
ij

.

Here, rij = |ri − rj | is the distance between the ith and j th charged particles and Qi is the
value of the ith point charge of type α: Q(α) = {Q(1), . . . ,Q(M)}. We shall here assume that
the electro-neutrality condition

N∑
i=1

Qi =
M∑

α=1

NαQ(α) = 0 (1)

is satisfied, and the standard PBC are imposed as described in [3, 5]. The total Coulomb
energy of N charges in the main cell is

U
(C)
N =

∑
1�i�N

Qiϕ(ri ),

where ϕ(ri ) is the electrostatic potential at the position ri of the ith charge. According to the
conventional Ewald scheme [5], this contribution is in turn the sum of one- and two-particle
terms:

ϕ(ri ) = ϕ1(ri ) +
1

2

N∑
j �=i

ϕ2(ri , rj ).

In the absence of external fields, the unitary potential is a constant:

ϕ1 = Qi

4πε0L

(
1

2π

∑
n>0

1

n2
exp

(
−π2n2

δ2

)
− δ√

π

)
(2)
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and the binary contribution can be written as follows [2, 5]:

ϕ2(rij ) = Qj

4πε0

(
erfc

(
δ

rij

L

)
rij

+
1

πL

∑
n>0

1

n2
exp

(
−π2n2

δ2

)
cos

(
2π

L
n · rij

))
. (3)

Here δ/L is the conventional Ewald parameter [2], n/L is the three-dimensional reciprocal
lattice site vector (n = |n|) and erfc(x) is the complementary error function. Keeping in mind
that all orientations of the main cell in an isotropic media should be equivalent, we can average
both sides of equation (3) over all directions of the vector n at a fixed distance rij . Using
brackets

〈· · ·〉 = 1

4π

∫ +1

−1
d(cos ϑ)

∫ π

−π

dψ · · · ,

where ψ,ϑ are the polar and azimuthal angles defining the direction of the vector n
(n · r = nr cos ϑ) to indicate such averaging, we can determine the pre-averaged (effective)
potential as ϕ2(rij ) ≡ 〈ϕ2(rij )〉. Integration of equation (3) over all orientations of the vector
n gives immediately

ϕ2(rij ) = Qj

4πε0rij

(
erfc

(
δ
rij

L

)
+

1

2π2

∑
n>0

1

n3
exp

(
−π2n2

δ2

)
sin

(
2π

L
nrij

))
. (4)

The pre-averaged charge–charge potential, equation (4), is a continuous function of the inter-
particle distance rij and can be expanded in converging power series in terms of this distance.
Since both erfc(x) − 1 and sin(x) are odd functions

ϕ2(rij ) = Qj

4πε0rij


1 +

∑
k�0

Ckr
2k+1
ij


 . (5)

The coefficients Ck in equation (5) are found in [6] by direct expansion of equation (4) in
a MacLaurin series. The procedure is straightforward: by applying the Euler–MacLaurin
formula generalized for summation over three-dimensional integers n the following result
holds [6]:

C0 = 1

π

∑
n>0

1

n2
exp

(
−π2n2

δ2

)
− 2δ√

π
, C1 = 2π

3L3
, Ck = 0, k > 1.

By taking into account the electroneutrality condition, equation (1), it can be seen that the
term in equation (5) which is independent of distance (proportional to C0) and the one-particle
contribution, equation (2), cancel one another. This implies that the total Coulomb energy of
N charged particles in the main cell can be described by the sum

U
(C)
N = −

N∑
i=1

3Q2
i

16πε0rm

+
1

2

N∑
i=1

N∑
j=1,j �=i

φ̃(rij ), (6)

where φ̃(rij ) is an effective potential defined by

φ̃(r) =




QiQj

4πε0r

{
1 +

1

2

(
r

rm

)[(
r

rm

)2

− 3

]}
r < rm

0 r � rm

(7)

and rm is the radius of the volume-equivalent sphere
(

4
3πr3

m = L3
)

of the main cell.
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Table 1. Comparison of predicted MC internal energies −U
(OCP)
MC /NkBT for OCP.

	 N = 64 (this work) N = 216 [11] N = 686 [12]

1 0.599 ± 0.010 0.580
10 7.895 ± 0.020 7.996
50 43.073 ± 0.019 43.094

100 87.555 ± 0.033 87.480 87.52a

160 141.00 ± 0.016 140.89 141.72
200 176.62 ± 0.012 176.77b

a Best fit value.
b Fluid initial conditions.

The pair effective (pre-averaged) potential, equation (7), has the following properties:

• At small r it tends to the pure Coulomb pair potential minus constant shift.
• It is zero at r = rm and remains zero at r > rm.
• Its first derivative is zero at r = rm.

• Its range corresponds to the size of the main cell: rm = (
3

4π

) 1
3 L = 0.620 35L.

The last property entails some inconsistency with the initial main cell configuration. If the
range of interaction does not exceed L/2 each particle in the cell contributes (or not) to the sum
of interactions with the selected one just once: either as the original object (inside the main
cell) or as one of its ‘images’. This is not the case for potential equation (7) because rm > L/2.
The subsequent modification of the simulation algorithm is formulated in [6]. Two different
zones exist within the effective sphere surrounding an arbitrary charge in the main cell [6].
The first zone contains charged particles (inside the main cell) or their images (outside it)
that contribute to the sum of pair interactions of the chosen charge just one time. The second
zone contains those charged particles which contribute twice to the interaction energy with
the given charge—both as original charges and as their additional ‘phantom’ images [6].

3. Applications to simplest plasma models

3.1. One-component plasma: MC simulation

The one-component plasma (OCP), i.e. a system of point ions placed in a rigid neutralizing
background, is a text-book example of a classical Coulomb system for which the standard
Ewald approach was successfully applied [11, 12]. Separating the interactions of the negative
(background) charge distribution in equation (6) and replacing summation over negative
ions by integration over uniformly distributed background charge, one gets the following
generalization of equation (6) for the OCP:

U
(OCP)
N = −0.9

N2Q2

4πε0rm

+
1

2

N∑
i=1

N∑
j=1,j �=i

φ̃(rij ), (8)

where N is the number of positive ions. It should be noted that both terms here are
size dependent but not directly proportional to N. The first contribution in equation (8)
per one ion at given temperature T can be expressed in terms of plasma parameter
	 = Q2N1/3(4πε0rmkBT )−1 as −0.9kBT 	N2/3. Two series of MC simulations using the
method outlined above and the algorithm described in [6] were performed to prove that
equation (8) gives correct estimations of the OCP energy at relatively small N and the mean
value of U

(OCP)
N

/
N converges at large N. Details of the MC simulation procedure were reported

earlier [13, 14]. Results are presented in table 1 for 	 = 1, . . . , 200 at fixed N = 64 and
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Figure 1. Thermal contribution 
E(th)/NkBT = (U
(MC)
N − U

(BCC)
N )/NkBT to internal energy of

OCP at 	 = 100 calculated with the proposed effective potential and U
(BCC)
N (N) from [17] (open

circles) in comparison with the conventional Ewald scheme [11] (solid square) and [12] (solid
triangle).

compared in figure 1 to the MC data of Hansen [11], and Stringfellow, DeWitt and Slattery
[12] for a wide range of N at fixed 	 = 100.

3.2. MD simulation of hydrogen plasma

Another simple model system suitable for testing of the method is the two-component semi-
classical model of hydrogen plasma. In order to test the effectiveness and accuracy of the
method described above, it was incorporated in our MD simulation program, described earlier
[14], and the original MD simulation of Hansen and McDonald [15] repeated. Following [15],
a version of the Glauberman–Yukhnovskii [16] potential model for ion–electron plasma was
applied:

φαβ(r) = ZαZβe2

r
[1 − exp(−r/λαβ)]. (9)

Here, λαβ is the thermal de Broglie wavelength, α, β = i (ions), e (electrons):

λαβ = h(mα + mβ)

(2π)3/2(mαmβkBT )1/2
. (10)

Simulations were carried out on the same 	 and rs as in the original work of Hansen and
McDonald [15]. Some results for the same cell size (125 ions and 125 electrons) as used in
[15] and a bigger cell size are presented in table 2 and figure 2. One can find details of the MD
simulation procedure in [14]. In table 2, along with the compressibility factor and diffusion
coefficients, the mean potential energy U and its configuration part Uconf are presented to
illustrate the effect of temperature dependence on potential parameters λαβ (equation (10)).
It ought to be mentioned that the calculated PV/NkBT value deviates noticeably from that
of [15] and it is not clear which one is correct. Hopefully MC simulations in the future
development of this work will clarify this point.

4. Concluding remarks

Pre-averaging the Ewald sums over all spatial directions leads to an approach which eliminates
periodicity artefacts imposed by the conventional Ewald scheme and provides a fast method
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Figure 2. Radial distribution functions in hydrogen plasma. Comparison of our MD simulation
results with the solutions of HNC integral equations [15] (solid lines).

Table 2. MD simulation of hydrogen plasma at 	 = 2, rs = 1. Comparison with Hansen and
McDonald [15]. Diffusion coefficients De and Di are in 10−5 cm2 s−1.

125i + 125e 125i + 125e 250i + 250e
[15] (this work) (this work)

PV/NkBT 0.63 0.77 0.75
Uconf/NkBT – −1.12 −1.13
U/NkBT – −1.55 −1.51
De 2.47 2.83 2.78
Di 0.047 0.048 0.049

for computation of the electrostatic contribution to the energy of disordered dense systems in
MC or MD computer simulations [6].

All our simulations took from a few seconds up to a few hours per run on a PC depending
on the size of the main cell. The performance of modern PCs when combined with the
proposed method allows conventional MC/MD simulations to be run on cells containing up
to several thousand charged particles.

This method was applied recently to several simple ordered structures [17]. It was found
that the pre-averaging, originally devised for spatially uniform systems, provides surprisingly
fast convergence of predicted energy to exact values in ordered crystalline NaCl, CsCl, OCP–
BCC and CaF2 structures despite the inevitable non-zero net charge inside the equivalent
sphere. This makes feasible accurate simulations of Coulomb systems with large numbers of
particles in the cell near the melting/crystallization point. New MC and MD results presented
in section 3 prove the ability of the method to produce accurate results at low computational
cost.

MC simulations of OCP (small cell size N = 64) presented in table 1 are in good
agreement with other simulation data [11, 12]. At the same time the comparison presented in
figure 1 shows that it is very likely coincidental. The convergence to a constant value at large
N is non-monotonic. The thermal contribution to internal energy 
E(th)/NkBT at 	 = 100
shown in figure 1 is computed using values of EBCC/NkBT calculated in [17] as a function
of N. Our predictions are in reasonable agreement with Hansen [11] and Stringfellow, DeWitt
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and Slattery [12]. A small (about 0.5% of the total energy) deviation from [12] is nevertheless
well beyond the total estimated error of both simulations and requires additional study. This
discrepancy might affect the location of the crystallization point in OCP and may be due to
periodicity artefacts.

The last line in table 1 also ought to be commented on. OCP at 	 = 200 corresponds to
an equilibrium BCC crystal [12] at large N. However, the small number of ions (N = 64) is
incompatible with the formation of either BCC or FCC structures in the cell and corresponds
in our simulation to the fluid state. When the cell is large enough (N > 200), OCP with the
proposed effective potential crystallizes at 	 > 	cr in the BCC lattice. The value of 	cr is
about 180 and depends on N. In some range of 	 near 	cr both BCC and fluid structures (one
metastable) exist.

Whether OCP comes to a ‘glass transition’ is an interesting problem raised recently by
Daligault and Murillo [18]. According to our simulations, after fast cooling from the fluid
(low 	) state, OCP with proposed effective potential forms long-lived ‘frozen structures’
having energies higher than the equilibrium perfect BCC crystalline OCP. Ions in these
structures, in contrast to the conventional ‘glassy state’, are locally spatially ordered. Direct
visualization clearly reveals their highly imperfect polycrystalline structure with a certain
amount of relatively stable defects (dislocations, etc) which long after, eventually disappear.

To conclude, it ought to be mentioned that the technique proposed is applicable for
quantum Coulomb systems as well as for Coulomb systems with arbitrary short-range
interaction in frames of different ab initio approaches such as path integral Monte Carlo,
etc, and may be combined with density functional theory. The method may be used as an
effective tool in simulations of high-energy density matter produced by ultrafast proton beams
[20] or hadron colliders [19]. We believe that the implementation of pre-averaged potentials in
existing and upcoming computer simulation packages may essentially speed up conventional
MC and MD simulations of strongly coupled Coulomb systems and decrease errors caused by
periodicity artefacts in ab initio computer simulations with small numbers of particles in the
main cell, especially near the phase transition points.
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